
CS448f: Image Processing For
Photography and Vision

Fast Filtering Continued

Filtering by Resampling

• This looks like we just zoomed a small image

• Can we filter by downsampling then upsampling?

Filtering by Resampling

Filtering by Resampling

• Downsampled with rect (averaging down)

• Upsampled with linear interpolation

Use better upsampling?

• Downsampled with rect (averaging down)

• Upsampled with bicubic interpolation

Use better downsampling?

• Downsampled with tent filter

• Upsampled with linear interpolation

Use better downsampling?

• Downsampled with bicubic filter

• Upsampled with linear interpolation

Resampling Simulation

Best Resampling

• Downsampled, blurred, then upsampled with
bicubic filter

Best Resampling

• Equivalent to downsampled, then upsampled
with a blurred bicubic filter

What's the point?

• Q: If we can blur quickly without resampling,
why bother resampling?

• A: Memory use

• Store the blurred image at low res, sample it
at higher res as needed.

Recap: Fast Linear Filters

1) Separate into a sequence of simpler filters

- e.g. Gaussian is separable across dimension

- and can be decomposed into rect filters

2) Separate into a sum of simpler filters

Recap: Fast Linear Filters

3) Separate into a sum of easy-to-precompute
components (integral images)

- great if you need to compute lots of different filters

4) Resample

- great if you need to save memory

5) Use feedback loops (IIR filters)

- great, but hard to change the std.dev of your filter

Histogram Filtering

• The fast rect filter

– maintained a sum

– updated it for each new pixel

– didn't recompute from scratch

• What other data structures might we maintain
and update for more complex filters?

Histogram Filtering

• The min filter, max filter, and median filter

– Only care about what pixel values fall into
neighbourhood, not their location

– Maintain a histogram of the pixels under the filter
window, update it as pixels enter and leave

Histogram Updating

Histogram Updating

+

+

+

+

+

+

+

Histogram Updating

Histogram Updating

-

-

-

-

-

-

-

Histogram Updating

Histogram-Based Fast Median

• Maintain:

– hist = Local histogram

– med = Current Median

– lt = Number of pixels less than current median

– gt = Number of pixels greater than current median

Histogram-Based Fast Median

• while (lt < gt):

– med--

– Update lt and gt using hist

• while (gt < lt):

– med++

– Updated lt and gt using hist

Histogram-Based Fast Median

• Complexity?

• Extend this to percentile filters?

• Max filters? Min filters?

Use of a min filter: dehazing

Large min filter

Difference (brightened)

Weighted Blurs

• Perform a Gaussian Blur weighted by some
mask

• Pixels with low weight do not contribute to
their neighbors

• Pixels with high weight do contribute to their
neighbors

Weighted Blurs

• Can be expressed as:

• Where w is some weight term

• How can we implement this quickly?

















fx

fxx

xIxI

fx

fxx

xIxI

xwe

xwexI

xO

'

)))'()(((

'

)))'()(((

)'(.

)'(.).'(

)(
2

1

2
1





Weighted Blurs

• Use homogeneous coordinates for color!

• Homogeneous coordinates uses (d+1) values
to represent d-dimensional space

• All values of the form [a.r, a.g, a.b, a] are
equivalent, regardless of a.

• To convert back to regular coordinates, divide
through by the last coordinate

Weighted Blurs

• This is red: [1, 0, 0, 1]

• This is the same red: [37.3, 0, 0, 37.3]

• This is dark cyan: [0, 3, 3, 6]

• This is undefined: [0, 0, 0, 0]

• This is infinite: [1, 5, 2, 0]

Weighted Blurs

• Addition of homogeneous coordinates is
weighted averaging

• [x.r0 x.g0 x.b0 x] + [y.r1 y.g1 y.b1 y]

= [x.r0+y.r1 x.g0+y.g1 x.b0+y.b1 x+y]

= [(x.r0+y.r1)/(x+y)

(x.g0+y.g1)/(x+y)

(x.b0+y.b1)/(x+y)]

Weighted Blurs

• Often the weight is called alpha and used to
encode transparency, in which case this is
known as “premultiplied alpha”.

• We’ll use it to perform weighted blurs.

Image:

Weight:

Result:

Result:

• Why bother with uniform weights?

• Well... at least it gets rid of the sum of the
weights term in the denominator of all of
these equations:









fx

fxx

xIxI
exIxO

'

)))'()(((2
1).'()(



Weight:

Result: Like a max filter but faster

Weight:

Result: Like a min filter but faster

Weight:

Result: A blur that ignores the dog

In ImageStack:

• Convert to homogeneous coordinates:
– ImageStack -load dog1.jpg -load mask.png

-multiply -load mask.png -adjoin c ...

• Perform the blur
– ... -gaussianblur 4 ...

• Convert back to regular coordinates
– ... -evalchannels “[0]/[3]” “[1]/[3]” “[2]/[3]”

-save output.png

The Bilateral Filter

• Pixels are mixed with nearby pixels that have a
similar value

• Is this a weighted blur?









fx

fxx

xxxIxI
eexIxO

'

))'(()))'()(((2
2

2
1 .).'()(



)))'()(((2
1)(

xIxI
exw






The Bilateral Filter

• No, there’s no single weight per pixel 

• What if we picked a fixed intensity level a, and
computed:









fx

fxx

xxxIxI
eexIxO

'

))'(()))'()(((2
2

2
1 .).'()(











fx

fxx

xxxIa
eexIxO

'

))'(()))'(((2
2

2
1 .).'()(



The Bilateral Filter

• This formula is correct when I(x) = a

• And is just a weighted blur, where the weight
is:









fx

fxx

xxxIa
eexIxO

'

))'(()))'(((2
2

2
1 .).'()(



)))'(((2
1)'(

xIa
exw






The Bilateral Filter

• So we have a formula that only works for pixel
values close to a

• How can we extend it to work for all pixel
values?

The Bilateral Filter

• 1) Pick lots of values of a

• 2) Do a weighted blur at each value

• 3) Each output pixel takes its value from the
blur with the closest a
– or interpolate between the nearest 2 a’s

• Fast Bilateral Filtering for the Display of High-
Dynamic-Range Images
– Durand and Dorsey 2002

– Used an FFT to do the blur for each value of a

The Bilateral Filter

• Here’s a better way to think of it:

• We can combine the exponential terms...









fx

fxx

xxxIxI
exIxO

'

))'())'()(((2
2

2
1).'()(











fx

fxx

xxxIa
eexIxO

'

))'(()))'(((2
2

2
1 .).'()(



Linearizing the Bilateral Filter

• The product of an 1D gaussian and an 2D
gaussian across different dimensions is a
single 3D gaussian.

• So we're just doing a weighted 3D blur

• Axes are:

– image x coordinate

– image y coordinate

– pixel value

The Bilateral Grid – Step 1
Chen et al SIGGRAPH 07

• Take the 2D image Im(x, y)

• Create a 3D volume V(x, y, z), such that:

– Where Im(x, y) = z, V(x, y, z) = (z, 1)

– Elsewhere, V(x, y, z) = (0, 0)

The Bilateral Grid – Step 2
• Blur the 3D volume (using a fast blur)

The Bilateral Grid – Step 3

• Slice the volume at z values corresponding to
the original pixel values

Comparison

Input

Regular blur

Bilateral Grid Slice

Pixel Influence

• Each pixel blurred together with

– those nearby in space (x coord on this graph)

– and value (y coord on this graph)

Bilateral Grid = Local Histogram Transform

• Take the weight channel:

• Blur in space (but not value)

Bilateral Grid = Local Histogram Transform

• One column is now the histogram of a region
around a pixel!

• If we blur in value too, it’s just a histogram with
fewer buckets

• Useful for median, min, max filters as well.

The Elephant in the Room

• Why hasn’t anyone done this before?

• For a 5 megapixel image at 3 bytes per pixel,
the bilateral grid with 256 value buckets
would take up:
– 5*1024*1024*(3+1)*256 = 5120 Megabytes

• But wait, we never need the original grid, just
the original grid blurred...

Use Filtering by Resampling!

• Construct the bilateral grid at low resolution
– Use a good downsampling filter to put values in the

grid

– Blur the grid with a small kernel (eg 5x5)

– Use a good upsampling filter to slice the grid

• Complexity?
– Regular bilateral filter: O(w*h*f*f)

– Bilateral grid implementation:
• time: O(w*h)

• memory: O(w/f * h/f * 256/g)

Use Filtering by Resampling!

• A Fast Approximation of the Bilateral Filter
using a Signal Processing Approach

– Paris and Durand 2006

Dealing with Color

• I’ve treated value as 1D, it’s really 3D

• The bilateral grid should hence really be 5D

• Memory usage starts to go up...

• Cost of splatting and slicing = 2d

• Most people just use distance in luminance
instead of full 3D distance
– values in grid are 3D colors (4 bytes per entry)

– positions of values is just the 1D luminance

= (R+G+B)/3

Bilateral Grid Demo and Video

Using distance in 3D
vs

Just using distance in luminance

Same luminance

Input Full Bilateral Luminance Only Bilateral

There is a disconnect between
positions and values

• Values in the bilateral grid are the things we
want to blur

• Positions (and hence distances) in the bilateral
grid determine which values we mix

• So we could, for example, get the positions
from one image, and the values from another

Joint Bilateral Filter

Reference Image

Input Image

Result

Joint Bilateral Application

• Flash/No Flash photography

• Take a photo with flash (colors look bad)

• Take a photo without flash (noisy)

• Use the edges from the flash photo to help
smooth the blurry photo

• Then add back in the high frequencies from
the flash photo

• Digital Photography with Flash and No-Flash Image Pairs

Petschnigg et al, SIGGRAPH 04

Flash:

No Flash:

Result:

Joint Bilateral Upsample
Kopf et al, SIGRAPH 07

• Say we’ve computed something expensive at low
resolution (eg tonemapping, or depth)

• We want to use the result at the original
resolution

• Use the original image as the positions
• Use the low res solution as the values
• Since the bilateral grid is low resolution anyway,

just:
– read in the low res values at positions given by the

downsampled high res image
– slice using the high res image

Joint Bilateral Upsample Example

• Low resolution depth, high resolution color

• Depth edges probably occur at color edges

Non-Local Means

• Average each pixel with other pixels that have
similar local neighborhoods

• Slow as hell

Think of it this way:

• Blur pixels with other pixels that are nearby in
patch-space

• Can use a bilateral grid!
– Except dimensionality too high

– Not enough memory

– Splatting and Slicing too costly (2d)

• Solution: Use a different data structure to
represent blurry high-D space

• (video)

Key Ideas

• Filtering (even bilateral filtering) is O(w*h)

• You can also filter by downsampling, possibly
blurring a little, then upsampling

• The bilateral grid is a local histogram
transform that’s useful for many things

