CS448f: Image Processing For
Photography and Vision

Fast Filtering Continued

Filtering by Resampling

* This looks like we just zoomed a small image

'

IS

* Can we filter by downsampling then upsampling?

Filtering by Resampling

OO
L

.

Filtering by Resampling

 Downsampled with rect (averaging down)
* Upsampled with linear interpolation

Use better upsampling?

 Downsampled with rect (averaging down)
* Upsampled with bicubic interpolation

Use better downsampling?

* Downsampled with tent filter
* Upsampled with linear interpolation

Use better downsampling?

* Downsampled with bicubic filter
* Upsampled with linear interpolation

Resampling Simulation

Best Resampling

* Downsampled, blurred, then upsampled with
bicubic filter

Best Resampling

* Equivalent to downsampled, then upsampled
with a blurred bicubic filter

What's the point?

* Q:If we can blur quickly without resampling,
why bother resampling?

* A: Memory use

e Store the blurred image at low res, sample it
at higher res as needed.

Recap: Fast Linear Filters

1) Separate into a sequence of simpler filters
- e.g. Gaussian is separable across dimension
- and can be decomposed into rect filters

2) Separate into a sum of simpler filters

Recap: Fast Linear Filters

3) Separate into a sum of easy-to-precompute
components (integral images)

- great if you need to compute lots of different filters

4) Resample
- great if you need to save memory

5) Use feedback loops (lIR filters)
- great, but hard to change the std.dev of your filter

Histogram Filtering

* The fast rect filter
— maintained a sum
— updated it for each new pixel
— didn't recompute from scratch

* What other data structures might we maintain
and update for more complex filters?

Histogram Filtering

 The min filter, max filter, and median filter

— Only care about what pixel values fall into
neighbourhood, not their location

— Maintain a histogram of the pixels under the filter
window, update it as pixels enter and leave

Histogram Updating

Histogram Updating

Histogram Updating

Histogram Updating

Histogram Updating

Histogram-Based Fast Median

* Maintain:
— hist = Local histogram
— med = Current Median
— |t = Number of pixels less than current median
— gt = Number of pixels greater than current median

Histogram-Based Fast Median

* while (It < gt):

— med--

— Update It and gt using hist
* while (gt < It):

— med++

— Updated It and gt using hist

Histogram-Based Fast Median

 Complexity?
* Extend this to percentile filters?
* Makx filters? Min filters?

Use of a min filter: dehazing

Large min filter

Difference (brightened)

Weighted Blurs

* Perform a Gaussian Blur weighted by some
mask

* Pixels with low weight do not contribute to
their neighbors

* Pixels with high weight do contribute to their
neighbors

Weighted Blurs

* Can be expressed as:

X+ f

Z | (X').e_(al(l (x)-1 (X'))Z)IW(X')
O(X) _ X'=x—f

X+ f o
Z g (1100100 \y)

X'=x—f
* Where w is some weight term
* How can we implement this quickly?

Weighted Blurs

Use homogeneous coordinates for color!

Homogeneous coordinates uses (d+1) values
to represent d-dimensional space

All values of the form [a.r, a.g, a.b, a] are
equivalent, regardless of a.

To convert back to regular coordinates, divide
through by the last coordinate

Weighted Blurs

Thisisred: [1,0, O, 1]

This is the same red: [37.3,0, 0, 37.3]
This is dark cyan: [0, 3, 3, 6]

nis is undefined: [0, O, O, O]

nis is infinite: [1, 5, 2, O]

Weighted Blurs

e Addition of homogeneous coordinates is
weighted averaging

* [X.rgX.8y X.by x] + [y.r; v.g, y.b; vyl
= [X.rgty.r; X.goty.g, X.bgty.b; x+y]
= [(x.rg+y.ry)/(x+y)

(X-8o+Y-81)/ (x+y)

(X.bg+y.by)/ (x+y)]

Weighted Blurs

e Often the weight is called alpha and used to
encode transparency, in which case this is
known as “premultiplied alpha”.

 We’ll use it to perform weighted blurs.

Weight:

Result:

Result:

 Why bother with uniform weights?

 Well... at least it gets rid of the sum of the
weights term in the denominator of all of
these equations:

X+ f

O(X) = Z | (X-)_e—(01(| ()=1(x)?)

X'=x—f

Result: Like a max filter but faster

e| :

Result: Like a min filter but faster

Weight:

Result: A blur that ignores the dog

In ImageStack:

* Convert to homogeneous coordinates:

— ImageStack -load dogl.jpg -load mask.png
-multiply -load mask.png —-adjoin c

e Perform the blur

— ... —gaussianblur 4 ...

* Convert back to regular coordinates
— ... —evalchannels “[01/[31” “[11/1[31” “N[21/131"”

—save output.png

The Bilateral Filter

* Pixels are mixed with nearby pixels that have a
similar value

X+ f

O(x) = Y 1(x').e (010D (o))

X'=x—f

* |s this a weighted blur?

) 2
w(x) = e~ (@ (100-10)")

The Bilateral Filter

X+ f

O(X) — Z | (X').e—(01(| (x)—1(x")?) _e_(GZ(X—X')Z)

X'=x—f

* No, there’s no single weight per pixel ®

 What if we picked a fixed intensity level a, and
computed:

X+ f

O(X) = Z | (X-)_e—(al(a—l (xD*) a=(o2(x=x)%)

X'=x—f

The Bilateral Filter

X+ f

O(X) = Z |(x'). (& (xD*) a=(o2(x=x)%)

X'=x—f

e This formula is correct when I(x) = a

* And is just a weighted blur, where the weight
IS:

W(X') = a—(01(@=10)%)

The Bilateral Filter

* So we have a formula that only works for pixel
values close to a

* How can we extend it to work for all pixel
values?

The Bilateral Filter

1) Pick lots of values of a
2) Do a weighted blur at each value

3) Each output pixel takes its value from the
blur with the closest a

— or interpolate between the nearest 2 a’s

Fast Bilateral Filtering for the Display of High-
Dynamic-Range Images

— Durand and Dorsey 2002

— Used an FFT to do the blur for each value of a

The Bilateral Filter

* Here’s a better way to think of it:
 We can combine the exponential terms...

X+ f
O(x) = 3 1(x)e 00 grioation

X'=X—f

X+ f

O(x) = Z | (X').e ({10910 e (xx)%)

X'=Xx—f

Linearizing the Bilateral Filter

 The product of an 1D gaussian and an 2D
gaussian across different dimensions is a
single 3D gaussian.

* So we're just doing a weighted 3D blur
* AXes are:

— image x coordinate
— image y coordinate
— pixel value

The Bilateral Grid — Step 1
Chen et al SIGGRAPH 07

e Take the 2D image Im(x, y)

* Create a 3D volume V(x, vy, z), such that:
— Where Im(x,y) =z, V(x, ¥, z) = (z, 1)
— Elsewhere, V(x, vy, z) = (0, 0)

| V |

The Bilateral Grid — Step 2

e Blur the 3D volume (using a fast blur)

_—— ——
- - —_

The Bilateral Grid — Step 3

* Slice the volume at z values corresponding to
the original pixel values

= = T

Comparison

Input

Regular blur

Bilateral Grid Slice

Pixel Influence

* Each pixel blurred together with
— those nearby in space (x coord on this graph)
— and value (y coord on this graph)

| —

..--""F .

Bilateral Grid = Local Histogram Transform

* Take the weight channel:

e Blurin space (but not value)

Bilateral Grid = Local Histogram Transform

* One column is now the histogram of a region
around a pixel!

* If we blur in value too, it’s just a histogram with
fewer buckets

e Useful for median, min, max filters as well.

The Elephant in the Room

* Why hasn’t anyone done this before?

 For a 5 megapixel image at 3 bytes per pixel,
the bilateral grid with 256 value buckets
would take up:

— 5%1024*1024*(3+1)*256 =

* But wait, we never need the original grid, just
the original grid blurred...

Use Filtering by Resampling!

e Construct the bilateral grid at low resolution
— Use a good downsampling filter to put values in the
grid
— Blur the grid with a small kernel (eg 5x5)
— Use a good upsampling filter to slice the grid

* Complexity?
— Regular bilateral filter: O(w*h*f*f)

— Bilateral grid implementation:
* time: O(w*h)
 memory: O(w/f * h/f * 256/g)

Use Filtering by Resampling!

* A Fast Approximation of the Bilateral Filter
using a Signal Processing Approach

— Paris and Durand 2006

Dealing with Color

I've treated value as 1D, it’s really 3D

The bilateral grid should hence really be 5D
Memory usage starts to go up...

Cost of splatting and slicing = 2¢

Most people just use distance in luminance
instead of full 3D distance
— values in grid are 3D colors (4 bytes per entry)
— positions of values is just the 1D luminance

= (R+G+B)/3

Bilateral Grid Demo and Video

Using distance in 3D
VS
Just using distance in luminance

Same luminance

Input Full Bilateral Luminance Only Bilateral

There is a disconnect between
positions and values

* Values in the bilateral grid are the things we
want to blur

e Positions (and hence distances) in the bilateral
grid determine which values we mix

* So we could, for example, get the positions
from one image, and the values from another

Joint Bilateral Filter

Input Image —>1

<—Reference Image

Result

Joint Bilateral Application

Flash/No Flash photography
Take a photo with flash (colors look bad)
Take a photo without flash (noisy)

Use the edges from the flash photo to help
smooth the blurry photo

Then add back in the high frequencies from
the flash photo

* Digital Photography with Flash and No-Flash Image Pairs

Petschnigg et al, SSGGRAPH 04

Flash:

pide 0.‘\\‘

AN

Result:

Joint Bilateral Upsample
Kopf et al, SIGRAPH 07

Say we’ve computed something expensive at low
resolution (eg tonemapping, or depth)

We want to use the result at the original
resolution

Use the original image as the positions
Use the low res solution as the values

Since the bilateral grid is low resolution anyway,
just:
— read in the low res values at positions given by the
downsampled high res image

— slice using the high res image

Joint Bilateral Upsample Example

* Low resolution depth, high resolution color
* Depth edges probably occur at color edges

Input Solution

Nearest Neighbor Upsampling Bicubic Upsampling Gaussian Upsampling Joint Bilateral Upsampling

Figure 4: Stereo Depth: The low resolution depth map is shown at left. The top right row shows details from the upsampled maps using
different methods. Below each detail image is a corresponding 3d view from an offset camera using the upsampled depth map.

Non-Local Means

* Average each pixel with other pixels that have
similar local neighborhoods

e Slow as hell

Think of it this way:

Blur pixels with other pixels that are nearby in
patch-space

Can use a bilateral grid!

— Except dimensionality too high

— Not enough memory

— Splatting and Slicing too costly (29)

Solution: Use a different data structure to
represent blurry high-D space

(video)

Key ldeas

* Filtering (even bilateral filtering) is O(w*h)

* You can also filter by downsampling, possibly
blurring a little, then upsampling

* The bilateral grid is a local histogram
transform that’s useful for many things

